Spring Source Study and Climate Change of Tanahun District (RWSSP-WN Phase-II)

Sanna-Leena Rautanen

Chief Technical Adviser

Jari Laukka

M&E, Ins Dev. Specialist

Resham Phuldel

MIS Specialist

Ramesh Dhital

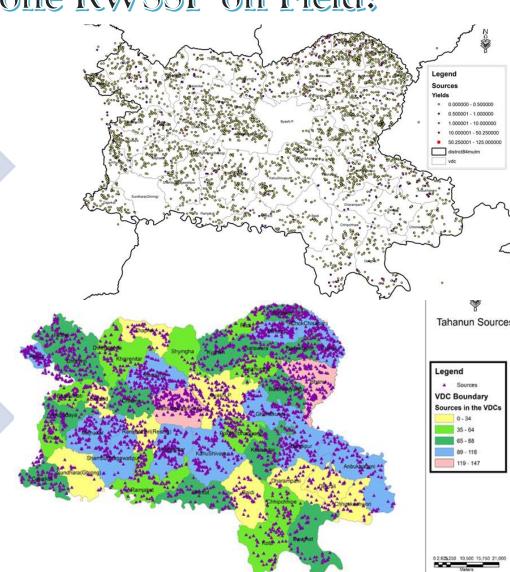
WASH Adviser

Dr. Binod Shakya

Climate & G.Water Consultant

What has been done RWSSP on Field?

2004

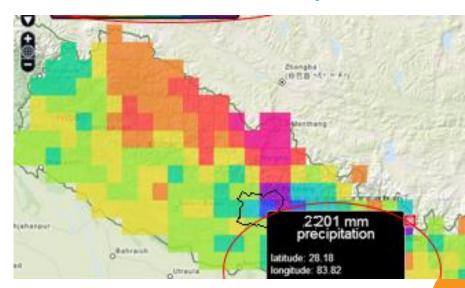

March

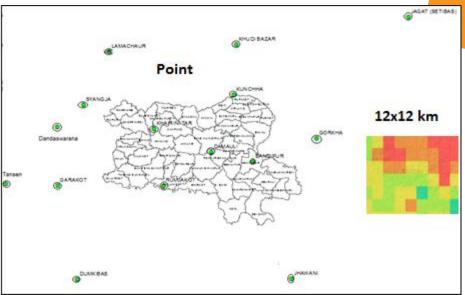
• 3320

2014

March

• 4000


What has been done in Climate Analysis?


Climate Change Projected

- PRECIS-HadCM3Q0-A1B
- 25 x25 km

Point and gridded Climate

- DHM
- 12 x 12

Key objective

2004

 To Prepare Water Supply and Sanitation Profile of Tanahun District

2014

 To identify and understand the changes in water resources by revisiting each of the 3320 water sources as identified ten years ago

Study Purpose

Source Yield between 2004-2014

Yield mapping

Climate between long term History

And between 2003 & 2013

Precipitation and Temperature

Climate Change Projection 2030-2060

How to integrate disaster and climate change risk in preparing District Strategic WASH Plans, VDC WASH Plans and Water Use Master Plans?

Method

Climate Projected

Data analysis

Yield measurement-Field 2004-2014

PRECIS-HadCM3Q0-A1B

25 x25 km

Statistical Analysis of long term and between 2003-2013

Climate data

12 x12 km

& point

GPS – location

Measure the water yield with bucket method

Collect local people experiences on water yield in their VDC over the past ten years

Water Source Information

The source site shall be visited with the villagers, measure yield and observe to fill up this format

Source: New or Old

bource location.				
Source Code	Source name	VDC	Ward	Ownership (private/public)

- a) Type of source: (tick any one)
 - a) Spring b) Spring fed Stream c) Point source (Kuwa/Pandhero) d) Other

Y

GPS reading:

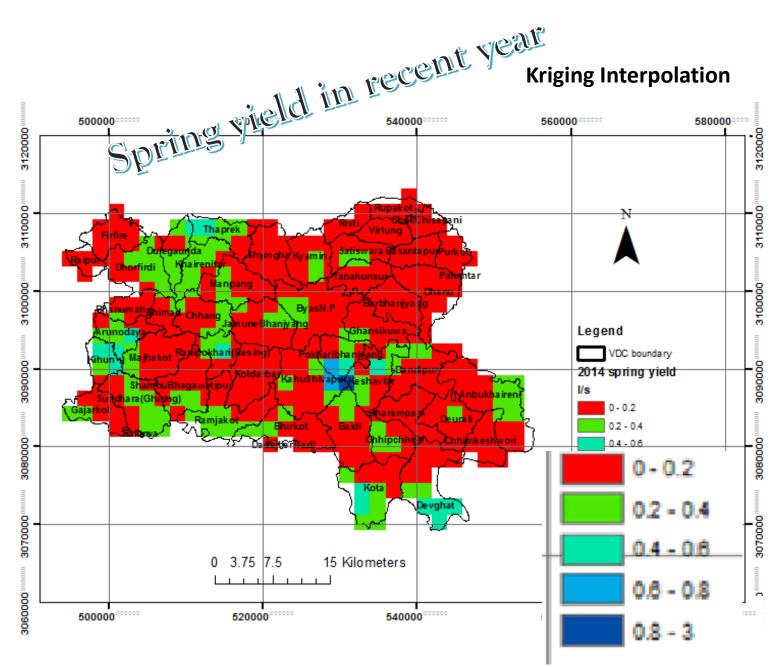
X

Previous

				J	8
1	A COMMON	h			200
	Present	×			
Section 1	X	Y	Elevation	Ace ra y	Reading Caber
0.01		7	10		
2 744			000	' & S	
1, 1,1,1,0,000	Source yield:		0.0		
487.71	Previous Yields Pr	esent Measured	Safe yie		Date measured
		yield (lps)			(ddmmyy)

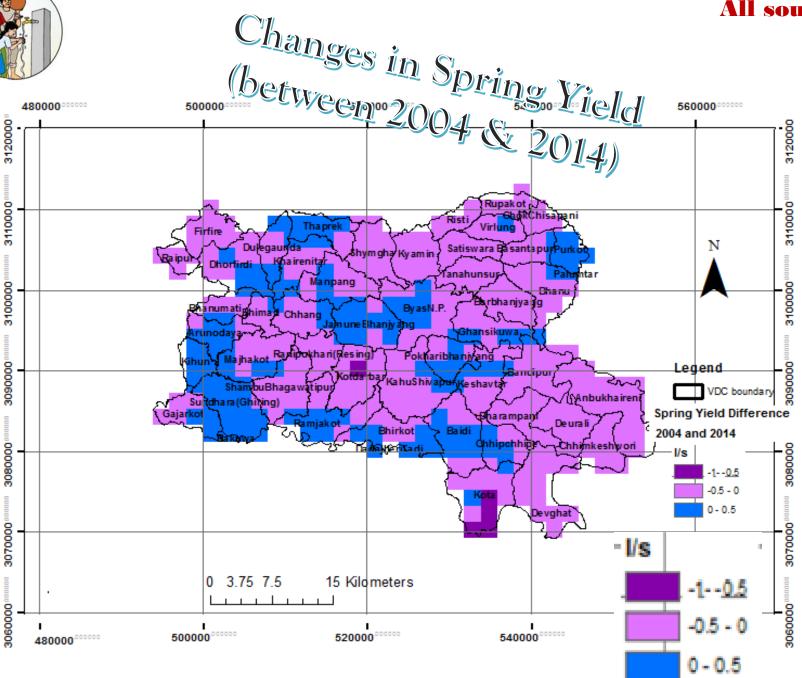
Elevation | Accuracy

Reading Number


Present use of source: Yes Wes fill ex it scheme name and tick any one

Scheme name. Scheme : Gravity Irrigation MHP MUS

Environment around the same area 10 Years ago (discuss with villager): (middle of jungle, bushes, land, landslide, or rivulet, etc. & indicate possibility of contamination due to upstream settlement)


Environment around the source area present: (middle of jungle, bushes, land, landslide area, rivulet, etc. & indicate possibility of contamination due to upstream settlement) or other

Point source (I/s) -2014		Spring Sources (I/s) - 2014		Stream source (I/s) -2014		
Sample Size 685		Sample Size	1115	Sample Size	587	
Range	1.86	Range	3.329	Range	4.9	
Mean	0.045	Mean	0.16	Mean	0.32	
Variance	0.017	Variance	0.09	Variance	0.21	
Max	1.87	Max	3.33	Max	4.98	
75% (Q3) 0.045		75% (Q3)	0.16	75% (Q3)	0.32	
50% (Median) 0.01		50% (Median)	0.06	50% (Median)	0.23	
25% (Q1) 0.001		25% (Q1)	0.001	25% (Q1)	0.06675	
Point source (I/s)-2004		Spring Sources (I/s) - 2004		Stream source (I/s) -2004		
Sample Size	685	Sample Size	1115	Sample Size	587	
Range	2.99	Range	2.999	Range	4.99	
Mean	0.09	9 Mean		Mean	0.485	
Variance	0.048	Variance		Variance	0.5	
Max	Max 3 Max		3	Max	5	
75% (Q3) 0. 1 75% (Q3)		75% (Q3)	0.2	75% (Q3)	0.4	
50% (Median 0.012 50		50% (Median)	0.11	50% (Median)	0.23	
250/ /04)	0.001	250/ /04)	0.001	250/ /01)	0.12	

How sources are declining?

Point source (I/s) - 2014

Mean 0.045

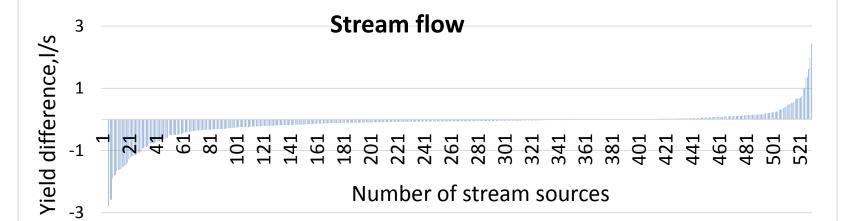
Point source

(I/s)-2004

Mean

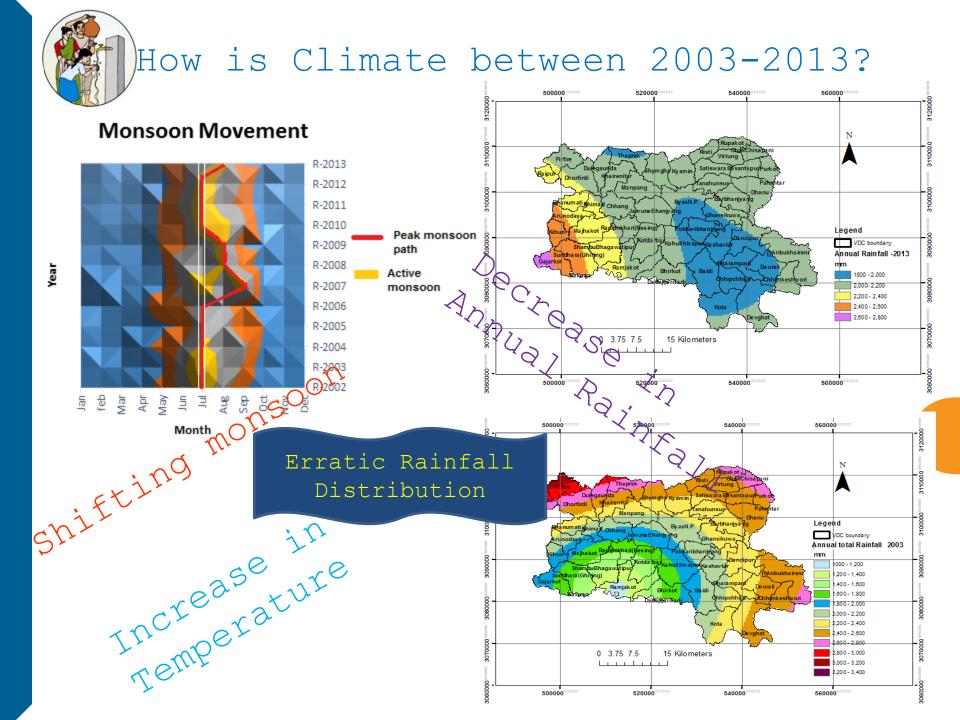
Spring Sources Stream source

Mean 0.16 Mean 0.32


Spring Sources Stream source

20% (I/s) -2004 34% (I/s) -2004

Mean

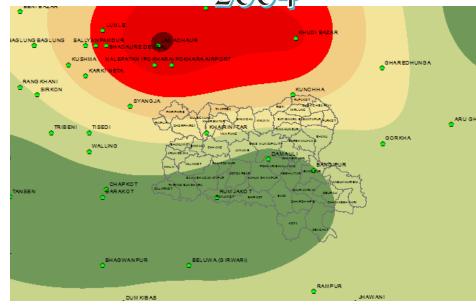

(l/s) -2014 (l/s) -2014

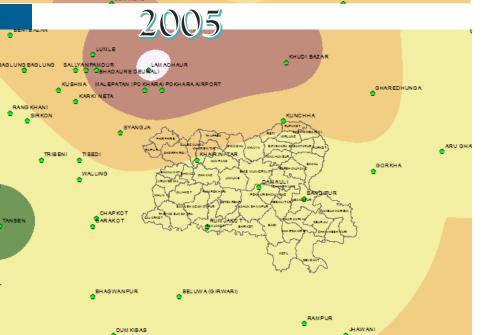
0.202 Mean

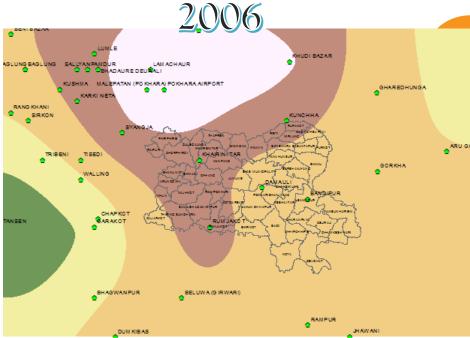
What are the climatic reasons behind this declining yield?

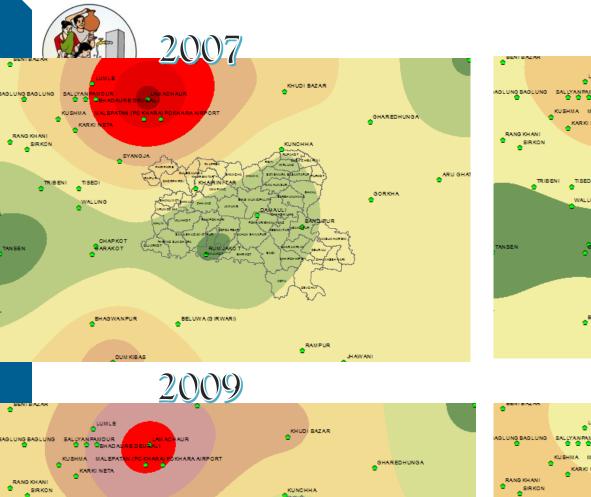
Annual Rainfall Distribution

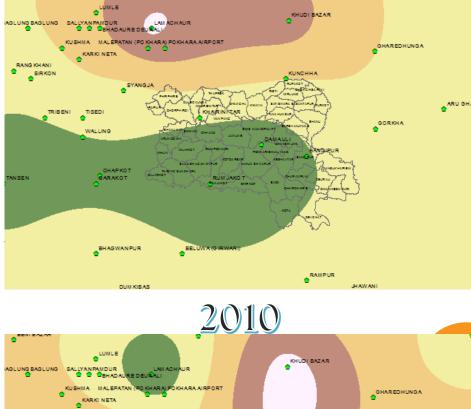
2003


2003


2003


2003


2004


ABLUNG BAGLUNG BALLYARMAN POLYARA AND SEA AND SEA

TRIBENI

TANSEN

WALLING

CHAPKOT

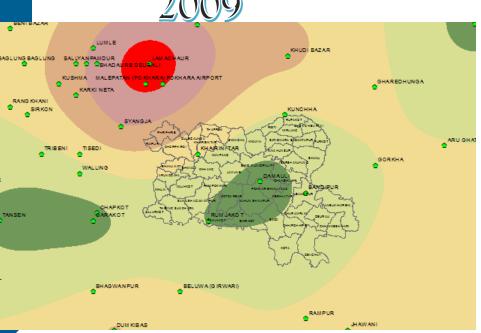
BHAGWANPUR

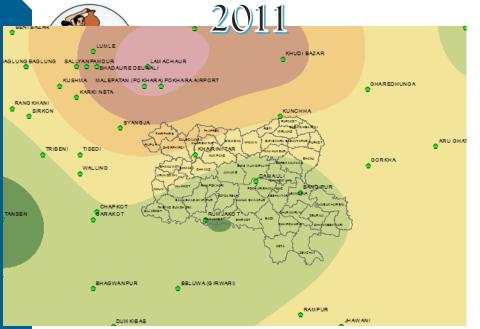
DUM KIBAS

BELUWA (GIRWARI)

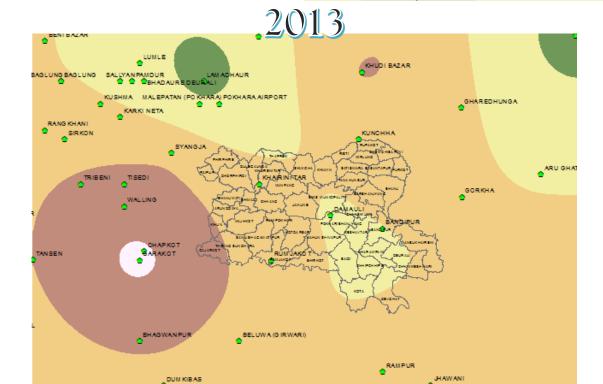
BARAKOT

KUNCHHA

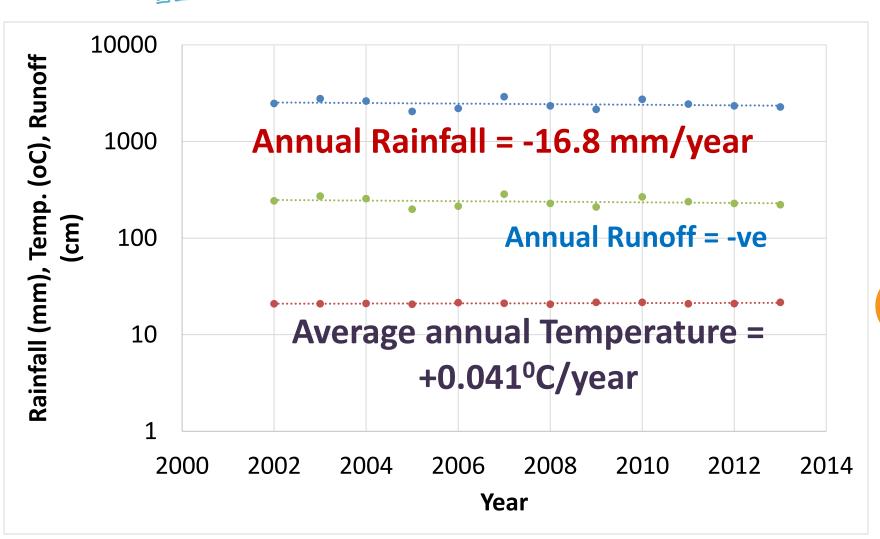

RAMPUR


JHAW ANI

ARU GHA


GORKHA

2,008



How is Climate between 2003-2013?

CLIMATE AND SPRING YIELD CHANGES (10 years)

Changes between 2004 and 2014			
Annual Rainfall	-16.8 mm/year		
Annual Average Temperature	+ 0.041 °C /year		
Runoff	-0.59 cm/year		
Point source yield	-50%		
Spring source yield	-21.6 %		
Stream source yield	-34 %		

limate -Future Possible Changes and Current & long term Change

- Long term average (1970 to 2010)
- 12 x 12km interpolated gridded rainfall shows **2748 mm** (DHM climate portal).
- The average annual rainfall between 2002 and 2013 is 2298 mm,
- Projected annual average Rainfall (PRECIS-HadCM3Q0-A1B) between 2030 and 2060 (25x25km gridded) is 2153 mm.

Preparing climate integration in VDC scale

	2400-2800 mm		Firfire Raipur Dhorphirdi Dulegaunda Thaprek Rupakot		High
Annual Rainfall	1800-2400 mm	VDC	Ghansikuwa JamuneBhanjyang Kabilas Keshavtar Khairenitar Kihun Kota Kyamin Majhakot Manpang PokhariBhaniyang Purkot Banipokhari Bisti Satiswara Sundhara Syamgha Tanahunsur Virlung	Scale	Medium
	1600-1800 mm		Ramiakot Bhirkot Samungbhagawati		Low
			Ranipokhari Kotdarbar KahuShivapur		

V
7
4
4
1

4
<u> </u>
n.M
ل
V
N
1
0
(1)
(1)
(-)
(0)
Ŭ
>

Point Source Risti (south-west), Deurali(north), Highly Dharampani, Chipchhipe (north), Rupakot (north-west), Keshavtar (south-east), **Declining** Anbukhaireni (south), Rupakot, ChokChisapani Firfire, Dorphirdi (north-east) Thaprek, Dulegaunda Virlung, Shymgha, Kyamin Purkot, Dhorfirdi, Satiswara Basantapur, Khairenitar Raipur, Manpang (south), Tanahunsur, Bhanu (south), Barbhanjyang, ByasN.P. Declining Chhang, Bhanumati Bhimad, Ghansikuwa Rapinikaji (Wsir) Isastelli (central), KahuShivapur, Kotdarbar, ShambuBhagawatipur Progress

Anbukhaireni. Ramjakot (northwest), Baidi, Deurali Bhirkot, Chhimkeshwori Chhipchhipe, Devghat, Kota, JamuneBhanjyang (north) Jamune Bhayanjang (central -south), Gajarkot (south-west), Bandipur (centralnorth-west), Bhanumati (west), Bhanu (north), Basantapur (southeast), Phurkot (southwest), Manpang (north), Dorphirdi (west)

Rupakot, Risti, ChokChisapani Thaprek(north-south-central), Firfire, Thaprek, Dulegaunda Syamgha, Ghansikuwa, ByasN.P (north), Virlung, Shymgha, Kyamin Purkot, Dhorfirdi, Satiswara JamuneBhanjyang (west-south), Basantapur, Khairenitar Keshavtar, Kyamin, PokhariBhanjyang (south-east), Raipur, Manpang, Tanahunsur. Purkot, Ranipokhari, Syamgha, Bhanu. Barbhanjyang, ByasN.P. Tanahunsur, Bhanuma* (northeast) Virlun Chhang, Bhanumati isv). a Cho Chrisapani, Bhimad, Ghansikuwa Arunolaya, Majaktre Off Kotdarbar, Basantapur, Chhang(north-south-central), Pokharibhanjyang Bandipur, Devghat, KahuShivapur, Keshavtar Chhimkeshwori, Deurali, Kotdarbar, Shambu Bhagawatipur Anbukhaireni Dharampani, Baidi north-south east), Bhirkot, Anbukhaireni, Ramjakot (north) Gajarkot Gajarkot, Dharampani Sundhara (south-east) Baidi (north-south), Deurali Bhirkot, Chhimkeshwori Chhipchhipe, Devghat, Kota Thaprek (north-south-east), Purkot, Kota, Garakot, Majhakot, Raipur, Kihun, Sundhara. Arunodaya, Firfire, Dhorphirdi (north-east-Ramjakot, JamuneBhanjyang, Baidi, central), Dulegaunda, Khairenitar Manpang (north-west-central), Kihun, Dorphirdi (southeast), Manpang (central -south-north), (Central), Pokharibhanjyang(south), Chipchipe (central, south west), Chipchipe (south), Bhimad, Gajarkot (east), Ghansikuwa (south Jamune Bhayanjang, Byas

Stream source

NP(south-west, Sundhara (north-

central-west), Bhanumati (south-

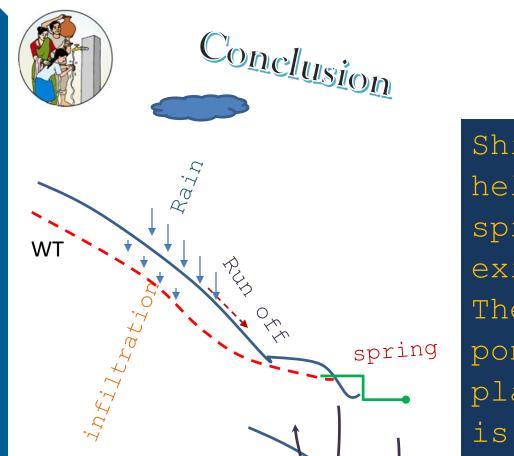
ShambuBhagawatipur(west), Bandipur (centralwest) Keshavtar(north), Jamune

east-northwest)

Risti (central), Virlung (west)

Satiswara (Central-north)

Spring Source


Kotdabar (central), Kota (central &

east-southwest), Byas NP(central-

west), Khairanitar (south) Bhirkot

(east-west)

south), Virlung (west and east)

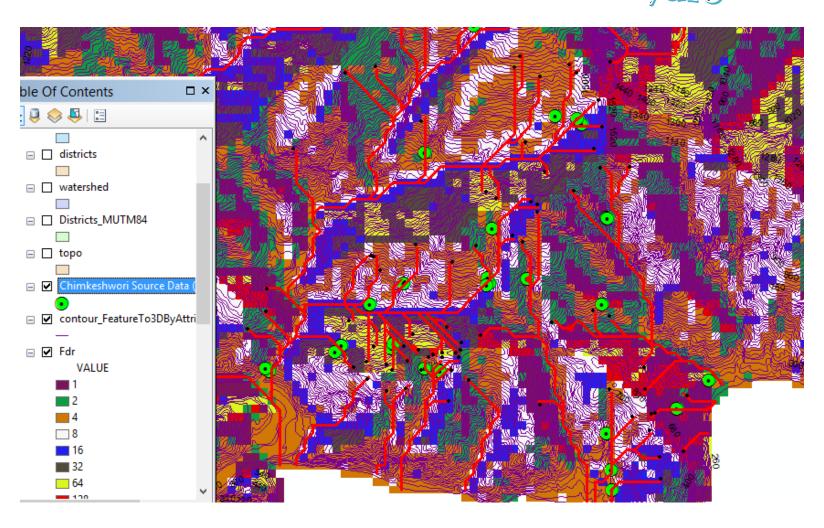
Shifting of rainfall may help in forming new spring but it may dry up existing source. Therefore conservation ponds or pits should be planned if source yield is remarkably decreasing.

Vadose Zone

Steps Needed

overland flow and subsurface flow tracking should be studied for recharge pits

construction of multiple percolation ponds is also recommended as recharge.



Investigation on water source recharge area using advance technology is needed –Isotopic Analysis for Construction of Recharge ponds

There might be other causes in declining water sources – study necessary

Flow path tracing -ARC hydro

Detail study report

Thank You

RWSSP-WN II Pokhara, Nepal Ph. No +977-(0)61-531883/4

URL: http://www.rwsspwn.org.np